
browser-based multilingual translation

bergam t
Horizon 2020 Research and Innovation Action

Grant Agreement No. 825303

https://browser.mt

Deliverable D6.1:
Basic Firefox Integration

Lead author(s): Kelly Davis (Mozilla)
Contributing author(s): NA

Internal Reviewer(s): Roman Grundkiewicz (UEDIN)

Work Package: WP6
Type of Deliverable: Other

Due Date: 30 September 2019
Date of Submission: 30.09.2019

Current Version: 1.0

https://browser.mt

Bergamot H2020–825303 D6.1 Basic Firefox Integration

Document History

Version Date Changes
1.0 30.09.2019 Original Submission

page 2

Bergamot H2020–825303 D6.1 Basic Firefox Integration

Executive Summary

The Bergamot project will deploymachine translation client-side on desktop
computers as an extension to Firefox. As an initial step towards this
goal, Deliverable 6.1 integrates server-side machine translation into Fire-
fox, translating web sites on the fly by sending the web site’s text
to a remote translation server. The primary components of this de-
liverable are contributions to the code base of the open-source Fire-
fox browser (available at https://github.com/browsermt/firefox/tree/D6.1-
Basic-Firefox-Integration), establishment of a server end-point expos-
ing the open-source Bergamot machine translation system (available at
https://github.com/marian-nmt/marian-dev), and the integration of these
two components. A video of the system translating a web page is available
at (https://youtu.be/ptmLzVeU0dk?vq=hd2160).

page 3

https://github.com/browsermt/firefox/tree/D6.1-Basic-Firefox-Integration
https://github.com/browsermt/firefox/tree/D6.1-Basic-Firefox-Integration
https://github.com/marian-nmt/marian-dev
https://youtu.be/ptmLzVeU0dk?vq=hd2160

Bergamot H2020–825303 D6.1 Basic Firefox Integration

Contents

1 Introduction 5

2 A Brief History of Firefox Translation 5

3 Integration of Translation into Firefox 7
3.1 Basics . 7
3.2 Advanced . 8

4 Learnings 9
4.1 Sentence Tokenization . 9
4.2 HTML Tags . 10
4.3 Translation Speed . 11

5 Conclusions 11

page 4

Bergamot H2020–825303 D6.1 Basic Firefox Integration

1 Introduction

The Bergamot project will add client-side machine translation to the Fire-
fox browser. Unlike current cloud-based options, running directly on users’
machines empowers citizens to preserve their privacy and increases the
uptake of language technologies in Europe in sectors that require confid-
entiality. However, integrating the complexities of machine translation into
Firefox client-side is a multi-step process. This deliverable is the first step
in this process.
In this deliverable we integrate the server-based Bergamot machine

translation engine with the Firefox browser. As a result of this integration,
when a user browses to a page not in their default language, the top of
their browser window displays a Translation Infobar that gives the option
to translate the web page from the source language to the user’s default
language, see Figure 1.

Figure 1: Screenshot of Firefox displaying the option to translate.

The user can then select to translate the web page if so desired. If they
indicate they want the web page translated, the web page is decomposed
into its various textural components and each is sent to the Bergamot ma-
chine translation server for translation. Once these are translated by the
server, these textural components are reassembled to create a translated
version of the web page with the same layout as the original, see Figure 2.

2 A Brief History of Firefox Translation

Firefox translation has had a long and fruitless history withinMozilla. There
have been at least two different efforts over the last 5 years to integrate
translation into the browser. Both have failed.

page 5

Bergamot H2020–825303 D6.1 Basic Firefox Integration

Figure 2: Screenshot of Firefox displaying a translated web page.

The Intellego Project, the first effort which started at the beginning of
2014, planned to “provide a single platform for (machine translation) en-
gine developers and a unified web service that hosts a number of different
language pairs/engines/implementations in the back end,” allowing users
to “select from a number of open MT engines based on the most promin-
ent MT methodologies in order to find the best target MT output for their
on-the-fly translation.”
The approach of the Intellego Project, while laudable, had many flaws,

several of them obvious several of themmore subtle. For example, the Intel-
lego Project took no consideration of how the costs of the servers would be
handled. Shouldering the costs of a small number of translations is not prob-
lematic. However, in scaling this to the entire user base of Firefox, server
costs quickly become a major issue. The Intellego Project also did not take
maintenance into consideration. Maintaining a single internal translation
engine for all the languages Firefox supports is a huge undertaking. Main-
taining numerous external translation engines for all the languages Firefox
supports is basically an impossible task when one wants maintain quality
and operate at scale. Another problem, the Intellego Project didn’t fully con-
sider the motivations of external parties with translation engines. A large
percentage of these external parties with high quality engines would un-
derstandably want to monetize their engines, reaping the benefits of their
investments in time and money. The Intellego Project assumed that these
parties would, without any monetary compensation, provide access to their
engines and models. One can explore further issues with the Intellego Pro-
ject, but these give a flavor of the reasons the project failed.
The second effort, which started in the middle of 2018, planned to integ-

rate Google translation services into Firefox as part of a larger business deal
switching Mozilla’s infrastructure over to Google’s Cloud Platform (GCP).
This effort was more grounded in the realities of what is required to sup-

page 6

https://wiki.mozilla.org/Intellego

Bergamot H2020–825303 D6.1 Basic Firefox Integration

port a translation engine at scale. However, the specifics of the larger busi-
ness deal shifted and, despite Mozilla’s move towards GCP, use of Google’s
translation service was not included in the deal. Firefox was left once again
without any translation service.
So currently Firefox does not support automatic translation of web pages

either through a “unified web service that hosts a number of different lan-
guage pairs/engines/implementations in the back end” or through Google’s
translation services. In this regard Firefox is behind Google’s Chrome.

3 Integration of Translation into Firefox

An heirloom which is gifted to Bergamot by this history of Firefox transla-
tion failures is a Firefox code base that has many of the primitives required
to integrate server based translation. This existing code base serves to
make basic Firefox integration with the Bergamot translation server much
simpler.
The Bergamot translation server used for the initial integration is a

German-English model, a part of the Edinburgh’s submission to the News
Translation Task at the Workshop on Machine Translation 2019 (Bawden
et al., 2019). The model has been developed with the focus on translation
quality using the Marian NMT toolkit (Junczys-Dowmunt et al., 2018a).
The code with the initial Firefox integration is available from: https://

github.com/browsermt/firefox/tree/D6.1-Basic-Firefox-Integration

3.1 Basics

The primitives already within Firefox reduce the task of introducing a new
Bergamot server based translation engine to the following set of four steps:

1. Create new JavaScript class that translates using the Bergamot server.
In our case the class is BergamotTranslator defined in Bergamot-
Translator.jsm.

2. Register BergamotTranslator.jsm with the browser in
browser_all_files_referenced.js and moz.build.

3. Set the value of the pref browser.translation.engine to the new
translation engine, in this case Bergamot.

4. Set the default translation engine to Bergamot in Translation.jsm.

All of these steps are relatively trivial except the first step which is where
the bulk of this deliverable focused.
Creating a new JavaScript class that translates using the Bergamot

server involves creating a class that executes the following three steps:

page 7

https://github.com/browsermt/firefox/tree/D6.1-Basic-Firefox-Integration
https://github.com/browsermt/firefox/tree/D6.1-Basic-Firefox-Integration

Bergamot H2020–825303 D6.1 Basic Firefox Integration

1. Splitting the web page into textural elements to be translated.

2. Batching these textural elements into parallel requests, for perform-
ance sake, that are sent to the Bergamot translation server.

3. Asynchronously receiving results from the Bergamot server and pla-
cing the translated textural elements into the correct positions in the
web page.

Implementation of a JavaScript class that executes the previous three
steps was not a difficult task. However, the implementation exposed several
interesting edge cases that we hadn’t anticipated.

3.2 Advanced

In particular, the implementation is tasked with translating textural ele-
ments of the form

<p>Welcome to Mozilla’s website</p>

to say Portuguese, which results in

<p>Bem-vindo à página da Mozilla</p>.

The Bergamot translation server is currently only capable of translating
pure text, “a” to “z” and “A” to “Z” along with punctuation. It is not capable
of handling HTML tags. So the Firefox browser has to send pure text

Welcome to Mozilla’s website

to the Bergamot translation server and receive pure text

Bem-vindo à página da Mozilla

in return and then re-insert the HTML tags. However, a moment’s thought
will show that this is impossible for a browser to do when it has no linguistic
knowledge, for instance in the form of word alignment between input and
translated sentences.
In translating “Welcome to Mozilla’s website” to “Bem-vindo à página da

Mozilla” the word order changed, “Mozilla” moved to the end, and “Mozilla”
is no longer possessive. So, for the browser to re-insert the tag around
“Mozilla” it would have to know that word order changes in this sentence
and “Mozilla” is no longer possessive. But, as the browser has no linguistic
knowledge, this is an impossible task.
A possible solution, which we did not implement in this basic integration,

is to train the Bergamot translation server to be able to handle HTML tags.
So, for example, the browser would then send

page 8

Bergamot H2020–825303 D6.1 Basic Firefox Integration

<p>Welcome to Mozilla’s website</p>

and receive

<p>Bem-vindo à página da Mozilla</p>

in return.
Another solution is stripping and re-inserting HTML tags into the trans-

lated text based on word alignment. The word alignment can be generated
with a word aligner, e.g. FastAlign (Dyer et al., 2013), or on-the-fly during
translation, with the latter being preferred as this does not add an extra
computational cost.

4 Learnings

The most important learnings gleaned from this basic Firefox integration
were concerned with sentence tokenization, how we handle HTML tags,
and with the general speed of translation.

4.1 Sentence Tokenization

The Firefox browser does not have any knowledge of a language’s syntax.
So, in particular, it does not know how to tokenize text into sentences. Thus,
when presented with text of the form

It was a pleasure to burn. It was a special pleasure to
see things eaten, to see things blackened and changed.

it does not know how to tokenize this into two sentences. So when sending
this text to the server it sends the sentences together as one uninterpreted
sequence of characters.
The NMT engine, however, performs best when it is translating once

sentence at a time, not a sequence of sentences. So to optimize translation
quality we had to find a means of delivering single sentences to the NMT
engine.
The solution we came up with was introducing a server-side sentence

tokenizer that tokenized the uninterpreted sequence of characters passed
from the client into sentences. The solution keeps the client, as it should
be, ignorant of a language’s syntax and concentrates any knowledge of a
language’s syntax, as it should be, with the NMT engine.

page 9

Bergamot H2020–825303 D6.1 Basic Firefox Integration

4.2 HTML Tags

The Firefox browser does not have any knowledge of a web page’s se-
mantics. It is concerned only with syntax. Furthermore, the Firefox browser
should not have any knowledge of a web page’s semantics. So, when presen-
ted with text of the form

Do not touch

it views this text as an uninterpreted sequence of characters, with no se-
mantic meaning. Thus, when such a text is translated to say French

Ne touche pas

it has no knowledge of the correspondence between the uninterpreted se-
quence of characters “Do not touch” and the uninterpreted sequence of
characters “Ne touche pas”.
If HTML tags are introduced

Do not touch

the resulting translation should be of the form

Ne touche pas.

However, as the Bergamot translation server does not handle HTML tags,
the Firefox browser is forced to pass “Do not touch” to the server, receive
“Ne touche pas” as a result, and re-insert the various HTML tags. But,
without semantic knowledge of the text, this is impossible. Thus, there is a
fundamental problem that must be addressed in regards to HTML tags.
To learn a bit about how this problem is handled by other production

translation engines, we tested various engines with this example

Do not touch

to see how they handled HTML tags. Currently Google does the following

 Ne pas </ b> toucher

Bing this

Ne touchez pas

Biadu this

page 10

Bergamot H2020–825303 D6.1 Basic Firefox Integration

< b > ne pas toucher

DeepL this

Do not toucher.

Basically all production engines are imperfect in some way, with Google
seemingly the least problematic.

4.3 Translation Speed

Another issue which was exposed as a result of this initial Firefox integra-
tion was that translation speed will be an issue. To some extent this is a
problem of our basic setup, a single server using a single GPU to do trans-
lation, but it is also clear that this will be a real issue we have to address.
In this basic integration we attempted to speed translation by split-

ting web pages into textural elements, batching these, and sending these
batches to the Bergamot translation server in parallel. This allowed for
batches to be sent to the GPU keeping the GPU highly utilized. This helped
some, but the translation speed still left something to be desired.
One obvious solution to this is to have N GPU’s translating for a single

Bergamot translation server endpoint. Thus would increase throughput by
a factor of N . However, it would also increase costs by that same factor,
which is not ideal when thinking about scaling this to a large user base.
An important thing to note is that the current neural machine translation

system behind the Bergamot translation server that is used for this initial
integration has been optimized only for translation quality, not for decoding
speed. In the future, we will use student models developed with the teacher-
student method (Junczys-Dowmunt et al., 2018b) and other optimizations
(Work Package 5), which allows for significant speed improvement, up to
20 times on a single GPU.
Another possible solution, and the one Chrome uses, is to translate web

sites in a “lazy manner”. By this we mean, send all the strings to be trans-
lated to the server but prioritize those strings that are user visible so they
are completed first. Doing this it appears to the user as if all of the text is
translated almost immediately. However, what the user does not know is
that all the strings they are not currently viewing are not yet translated.

5 Conclusions

The basic integration was a success. We have an end-to-end system up and
running with a good “first cut” at all of the key components involved in
Firefox integration. In addition, we exposed some problems which we will

page 11

Bergamot H2020–825303 D6.1 Basic Firefox Integration

have to address for the final integration and exposed them early enough in
the process that we can actually address them for later integrations.

page 12

Bergamot H2020–825303 D6.1 Basic Firefox Integration

References
Bawden, Rachel, Nikolay Bogoychev, Ulrich Germann, Roman
Grundkiewicz, Faheem Kirefu, Antonio Valerio Miceli Barone, and
Alexandra Birch. 2019. “The university of edinburgh’s submissions to the
wmt19 news translation task.” Proceedings of the Fourth Conference on
Machine Translation (Volume 2: Shared Task Papers, Day 1), 103–115.
Florence, Italy.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith. 2013. “A simple, fast,
and effective reparameterization of IBM model 2.” Proceedings of the
2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 644–648. At-
lanta, Georgia.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz, Tomasz Dwojak, Hieu Ho-
ang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, and Alexan-
dra Birch. 2018a. “Marian: Fast neural machine translation in C++.”
Proceedings of ACL 2018, System Demonstrations, 116–121. Melbourne,
Australia.

Junczys-Dowmunt, Marcin, Kenneth Heafield, Hieu Hoang, Roman
Grundkiewicz, and Anthony Aue. 2018b. “Marian: Cost-effective high-
quality neural machine translation in C++.” Proceedings of the 2nd
Workshop on Neural Machine Translation and Generation, 129–135. Mel-
bourne, Australia.

page 13

	Introduction
	A Brief History of Firefox Translation
	Integration of Translation into Firefox
	Basics
	Advanced

	Learnings
	Sentence Tokenization
	HTML Tags
	Translation Speed

	Conclusions

